J.U.C之并发工具:CyclicBarrier
(读此篇前建议完成《J.U.C之AbstractQueuedSynchronizer》的阅读)
1 CyclicBarrier介绍
CyclicBarrier(我们也称之为同步屏障),是一种同步的工具类。让一组线程在达到各个线程中设置的屏障(同步点)的时候阻塞,直到最后一个线程达到屏障时,屏障才会打开,所有被屏障阻塞的线程才会继续运行。
2 CyclicBarrier的使用场景
一般在一组线程需要相互等待,等待全部线程达到各自的屏障后,线程组中的线程才能继续运行的场景下使用。CyclicBarrier还提供了额外的功能,能够让一组线程全部达到屏障时,让最后一个到达同步点的线程执行指定的任务。
3 CyclicBarrier的使用方式
3.1 初始化
CyclicBarrier barrier = new CyclicBarrier(3);
CyclicBarrier barrier = new CyclicBarrier(3, new Runnable() {
@Override
public void run() {
System.out.println("hello world");
}
});
CyclicBarrier提供一个默认的构造函数,接受一个int类型的参数作为计数器,如果想设置N个屏障点(对应屏障拦截的N个线程),这里就传入N (这里的N必须大于等于0,等于0的时候屏障状态打开)。
CyclicBarrier还提供一个更高级的构造函数,CyclicBarrier(int parties, Runnable barrierAction),用于在所有线程达到屏障后,由最后一个到达屏障的线程执行barrierAction,在此之后,所有线程才能继续运行
3.2 线程标记达到屏障并等待其他线程达到屏障
barrier.await();
在每个需要被屏障拦截的线程中执行,标记此处为该线程的屏障,且在其他需要被屏障拦截的线程达到各自的屏障之前被阻塞,由于执行await()之后,线程会被阻塞,所以这里的N个屏障只能分散在N个线程(也就是由N个线程分别执行await方法),在多线程中,需要把这个CyclicBarrier的引用传递到线程中去即可
3.3 实战说明
CyclicBarrier可以用于多线程计算数据,最后合并数据的场景,例如四个线程分别通过计算得到四个数值,最后求和得到最终结果
public class CountNumService implements Runnable {
private CyclicBarrier barrier = new CyclicBarrier(4, this);
private Executor executor = Executors.newFixedThreadPool(4);
private ConcurrentHashMap<String, Integer> countMap = new ConcurrentHashMap<>();
public void count() {
for (int i = 0; i < 4; i++) {
executor.execute(new Runnable() {
@Override
public void run() {
//执行计算过程
//存储计算结果
countMap.put(Thread.currentThread().getName(), 1);
try {
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}
});
}
}
@Override
public void run() {
int result = 0;
for (Integer num : countMap.values()) {
result += num;
}
System.out.println("result:" + result);
}
public static void main(String[] args) {
CountNumService countNumService = new CountNumService();
countNumService.count();
}
}
4 CyclicBarrier与CountDownLatch的区别
我们发现使用CountDownLatch也适用上述的案例:在每个子线程中完成计算任务后执行counDown(),在主线程中执行await()方法,并在此之后执行求和操作
public class CountNumService {
private CountDownLatch latch = new CountDownLatch(4);
private Executor executor = Executors.newFixedThreadPool(4);
private ConcurrentHashMap<String, Integer> countMap = new ConcurrentHashMap<>();
public void count() {
for (int i = 0; i < 4; i++) {
executor.execute(new Runnable() {
@Override
public void run() {
//执行计算过程
//存储计算结果
countMap.put(Thread.currentThread().getName(), 1);
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
int result = 0;
for (Integer num : countMap.values()) {
result += num;
}
System.out.println("result:" + result);
}
public static void main(String[] args) {
CountNumService countNumService = new CountNumService();
countNumService.count();
}
}
的确如此,在一些等待其他线程执行任务的场景下,使用CountDownLatch与CyclicBarrier都能解决问题,但是两者还是有一定的区别:
- 使用CountDownLatch的时候,每个子线程标识完成任务是执行countDown()方法,在此之后线程并不会被阻塞,可以执行下去;而在使用CyclicBarrier的时候,每个子线程标识任务完成(达到屏障)是通过执行await()方法,在此之后线程被阻塞
- CountDownLatch不能重新初始化,所以只能被使用一次,而CyclicBarrier的计数器可以通过reset()方法重新初始化被循环使用。所以CyclicBarrier能够支持更加复杂的场景,例如发生计算错误的情况,可以重置计数器并让线程重新执行一次。
- CyclicBarrier还提供其他有用的方法,比如getNumberWaiting()可以获取CyclicBarrier阻塞的线程数量,isBroken()用来获取阻塞的线程是否被中断
5 实现原理
public class CyclicBarrier {
//每个barrier实例都会对应一个Genetation实例,而当barrier迭代被循环使用或者重置的时候,Genetation实例会被重新初始化(主要标识是否被中断)
private static class Generation {
boolean broken = false;
}
private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
//循环使用时计数器默认大小
private final int parties;
//所有线程达到屏障后执行的任务
private final Runnable barrierCommand;
/** The current generation */
private Generation generation = new Generation();
//实时计数器,每当线程达到屏障时减一(parties-->0)
private int count;
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
public CyclicBarrier(int parties) {
this(parties, null);
}
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));
}
//使用ReentrantLock的Condition的await()方法使得到达屏障的线程阻塞
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();//当最后一个线程到达屏障时,执行构造器传入的Runnable任务后打开屏障
ranAction = true;
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
private void breakBarrier() {
generation.broken = true;
count = parties;
trip.signalAll();
}
public void reset() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
breakBarrier(); // break the current generation
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}
private void nextGeneration() {
// signal completion of last generation
trip.signalAll();
// set up next generation
count = parties;
generation = new Generation();
}
public int getParties() {
return parties;
}
public boolean isBroken() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return generation.broken;
} finally {
lock.unlock();
}
}
public int getNumberWaiting() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return parties - count;
} finally {
lock.unlock();
}
}
}
- 与CountDownLatch不同,CyclicBarrier直接将内部实现委托给了ReentrantLock,在到达屏障点的时候执行Condition.await()方法阻塞当前线程,当最后一个线程达到屏障的时候执行Condition.notifyAll()方法唤醒所有线程。
- 当某个阻塞的线程中断或者超时后,唤醒所有线程,且所有线程都抛出相对应的异常
- 当最后一个线程到达屏障之后,会去执行构造是传入的可执行任务,然后计数器复位开始下一次循环迭代。
- reset()方法执行后,唤醒所有等待的子线程,然后计数器复位开始下一次循环迭代。